Pose Estimation and Shape Retrieval with Hough Voting in a Continuous Voting Space
نویسندگان
چکیده
In this paper we present a method for 3D shape classification and pose estimation. Our approach is related to the recently popular adaptations of Implicit Shape Models to 3D data, but differs in some key aspects. We propose to omit the quantization of feature descriptors in favor of a better descriptiveness of training data. Additionally, a continuous voting space, in contrast to discrete Hough spaces in state of the art approaches, allows for more stable classification results under parameter variations. We evaluate and compare the performance of our approach with recently presented methods. The proposed algorithm achieves best results on three challenging datasets for 3D shape retrieval.
منابع مشابه
All together now: Simultaneous Detection and Continuous Pose Estimation using a Hough Forest with Probabilistic Locally Enhanced Voting
Simultaneous object detection and pose estimation is a challenging task in computer vision. In this paper, we tackle the problem using Hough Forests. Unlike most methods in the literature, we focus on the problem of continuous pose estimation. Moreover, we aim for a probabilistic output. We first introduce a new pose purity criterion for splitting a node during the forest training. Second, we p...
متن کاملStatic Pose Estimation from Depth Images using Random Regression Forests and Hough Voting
Robust and fast algorithms for estimating the pose of a human given an image would have a far reaching impact on many fields in and outside of computer vision. We address the problem using depth data that can be captured inexpensively using consumer depth cameras such as the Kinect sensor. To achieve robustness and speed on a small training dataset, we formulate the pose estimation task within ...
متن کاملDepth-Encoded Hough Voting for Joint Object Detection and Shape Recovery
Detecting objects, estimating their pose and recovering 3D shape information is a critical problem in many vision and robotics applications. This paper addresses the above needs by proposing a new method called DEHV Depth-Encoded Hough Voting detection scheme. Inspired by the Hough voting scheme introduced in [13], DEHV incorporates depth information into the process of learning distributions o...
متن کاملRandom Forest with Suppressed Leaves for Hough Voting
Random forest based Hough-voting techniques have been widely used in a variety of computer vision problems. As an ensemble learning method, the voting weights of leaf nodes in random forest play critical role to generate reliable estimation result. We propose to improve Hough-voting with random forest via simultaneously optimizing the weights of leaf votes and pruning unreliable leaf nodes in t...
متن کاملLocale-Based Object Search under Illumination Change using Chromaticity Voting and Elastic Correlation
Searching for an object model is considered to be one of the most desirable and yet difficult searches. The problem is made difficult by the presence of clutter in a scene, as well as the fact that objects may be imaged under different lighting conditions. We have developed a feature localization scheme that finds a set of locales in an image. Our object search method matches image locales with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015